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Abstract In a classical 1986 paper by Erdös, Saks and Sós every graph of radius r 
has an induced path of order at least 2r − 1. This result implies that the independence 
number of such graphs is at least r . In this paper, we use a result of S. Fajtlowicz about 
radius-critical graphs to characterize graphs where the independence number is equal 
to the radius, for all possible values of the radius except 2, 3, and 4. We briefy discuss 
these remaining cases as well. 

Keywords Ciliate · Bipartite number · Forest number · Independence number · 
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1 Introduction and Key Definitions 

We limit our discussion to graphs that are simple, connected, and fnite of order n. 
Although we often identify a graph G with its set of vertices, in cases where we need 
to be explicit we write V (G). If  u, v  are a pair of adjacent vertices, we denote the 
corresponding edge by uv. An independent set is a set of pairwise non-adjacent ver-
tices. We let α = α(G) denote the independence number of G; this is the cardinality 
of a maximum independent set of G. The eccentricity of a vertex v of G, denoted by 
ecc(v), is the maximum of the shortest-path distances from v to the other vertices of 
G. The minimum eccentricity taken over all vertices of G is called the radius of G and 
is denoted r = r(G). We defne the path number of G, denoted by p = p(G), as the  
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maximum order of an induced path in the graph. One can make analogous definitions 
for the tree number, forest number, and bipartite number of G. These invariants are 
denoted by t = t (G), f = f (G), and b = b(G), respectively. Other more specialized 
definitions will be introduced immediately prior to their frst appearance. Standard 
graph theoretical terms not defned in this paper can be found in [10]. 

In a classical 1986 paper by Erdös, Saks and Sós [3], using a proof credited to 
F. Chung, it is shown that every graph of radius r has an induced path of order at least 
2r − 1. We state this result as Theorem 1. 

Theorem 1 [3] Let G be a graph. Then 

p ≥ 2r − 1. (1) 

Some immediate corollaries of Theorem 1 are summarized in the following 
Theorem 2. The best known of these corollaries is that the independence number 
of a graph is at least as large as its radius. This result was proven independently at 
roughly the same time as Theorem 1 by Fajtlowicz and Waller [5], motivated by an 
early conjecture of the computer program Graffiti [4], as well as by Favaron, Mahéo 
and Saclé [7]. Neither of the these independent proofs is similar to Chung’s proof of 
the Induced Path Theorem. 

Theorem 2 Let G be a graph. Then each of the following inequalities holds: 

1. α ≥ r;  
2. t ≥ 2r − 1; 
3. f ≥ 2r − 1; and 
4. b ≥ 2r .  

The frst three inequalities are obvious consequences of Theorem 1. Part  4 was 
proved by Fajtlowicz [6]. (The r-ciliates introduced in this paper are bipartite and have 
at least 2r vertices). 

Although it is easy to fnd graphs (other than cliques) for which these four inequali-
ties are best possible, the problem of characterizing the case of equality for each lower 
bound has apparently remained unresolved. Of particular interest has been character-
izing those graphs where α = r [2,5–7]. Thus, the main purpose of this paper is to 
characterize those graphs where α = r , when r ≥ 5. It seems possible our techniques 
can be modifed to characterize the case of equality for the remaining inequalities from 
Theorem 2 as well, for large enough r . Indeed, because α ≥ b/2 ≥ r , conditions that 
are suffcient to imply α = r also imply b = 2r . Nevertheless, we do not directly 
address these problems here. 

There exist at least two different generalizations of Theorem 1, provided indepen-
dently by Fajtlowicz [6, Theorem 2], Bacsó and Tuza [1, Theorem 1] and Freed and 
Melrose [8]. Another of Bacsó and Tuza’s theorems (stated here as Theorem 3) more-
over characterizes the case of equality for Theorem 1. For an integer k, a vertex v of a 
graph G is called a k-center of G provided each vertex of G is within distance k of v. 

Theorem 3 [1,8] Let G be a graph. Then p(G) = 2r(G) − 1 if and only if for every 
connected induced subgraph H of G, r(H) ≤ r(G) and each vertex of H is within 
distance r(G) − 2 of an r(G)-center of H. 
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Fig. 1 The 7-ciliate C(8, 3) 

However, it is the aforementioned 1988 result of Fajtlowicz that plays a key role in 
this paper. Fajtlowicz proves this result in the context of characterizing radius-critical 
graphs, which are graphs in which every proper induced connected subgraph has radius 
strictly less than the parent graph. Let P(n) and C(n) denote the path on n vertices and 
the cycle on n vertices, respectively. Let C(p, q) denote the graph obtained from p 
disjoint copies of P(q + 1) by linking together one endpoint of each path in a cycle 
C(p). The graphs C(2t, r − t) have radius r and are referred to as r-ciliates. Ciliates 
include the even paths P(2r) and even cycles C(2r) as the extreme cases t = 1 and 
t = r . Figure 1 depicts the 7-ciliate C(8, 3) = C(2 · 4, 7 − 4). 

Theorem 4 [6] Let G be a graph with r ≥ 1. Then G contains an r-ciliate as an 
induced subgraph. 

Let G be a graph with r ≥ 1. Suppose G contains an induced subgraph H such 
that H = P(2r) or H = C(2r). We call the vertices of H the internal vertices. Enu-
merate the internal vertices as h1, h2, h3, . . . ,  h2r , where h1 is adjacent to h2, h2 is 
adjacent to h3, and so forth. Let hi and h j be two distinct vertices on H . Then we 
defne δ(hi , h j ) = min{| j − i |, 2r − |  j − i |}. Note that if H is a cycle, then δ(hi , h j ) 
is just the shortest-path distance between hi and h j with respect to H . If  H is a path, 
let F be the cycle formed from H by joining h1 and h2r . Then δ(hi , h j ) is just the 
shortest-path distance between hi and h j with respect to F . Moreover, we say that hi 

and h j are consecutive provided δ(hi , h j ) = 1. Hence, h1 and h2r are consecutive. 
Next, let S = V (G) − V (H). We call the vertices of S the external vertices. 

Suppose v is an external vertex. Then we let δ(v) = max{δ(hi , h j ) : v is adjacent to 
hi , h j }. We will later show δ(v) is well-defned when α = r , i.e. each external vertex 
must be adjacent to at least two internal vertices. We call v a double vertex (with 
respect to H ) if  v is adjacent to exactly two consecutive internal vertices. Likewise, 
we call v a triple vertex (with respect to H ) if  v is adjacent to exactly three consecutive 
internal vertices. 

A pair of external vertices is said to be degenerate (with respect to H ) if the union 
of their internal neighbors is a subset of three consecutive vertices. A pair of external 
vertices {u, v} is said to be related (with respect to H ) if the union of their internal 
neighbors is a set of four consecutive vertices. The edge in H joining the middle two 
of these four consecutive internal vertices is called the central edge associated with the 
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Fig. 2 A 5-scaffold with 
H = C(10) 

related pair {u, v}. On the other hand, a pair of external vertices is said to be unrelated 
(with respect to H ) if they are neither degenerate nor related. 

Finally, if H is a cycle, properly color the edges of H alternately red and green. If H 
is a path, imagine the cycle F formed from H by joining h1 and h2r and properly color 
the edges of F alternately red and green. In either case, we can assume the edge h1h2 
is colored red and the (possibly imaginary) edge h1h2r is colored green. Associate the 
color red (respectively green) with each pair of related vertices having a central edge 
that is red (respectively green). Furthermore, we call a double vertex whose neighbors 
in H or F induce a red edge (respectively, green edge), a red double (respectively, 
green double). 

A graph G is called an r -scaffold provided G has radius r and contains an induced 
subgraph H = P(2r) or H = C(2r) such that these seven conditions hold. 

(1) Every external vertex is either a double or a triple vertex. 
(2) Every pair of degenerate vertices is adjacent and no pair of unrelated vertices is 

adjacent. 
(3) Let {u, v}, {x, y} be two pairs of related vertices which are associated with dif-

ferent colors. If the pairs are disjoint with no edges between the frst pair and the 
second pair, or if v = x , then either uv is an edge or xy  is an edge. 

(4) If H is a path, and v is a double vertex whose two internal neighbors are not 
endpoints of H , then v is red. 

(5) If H is a path, and {x, y} is a pair of related vertices associated with red whose 
central edge is not the frst or last edge in H , then xy  is an edge. 

(6) If x is a red double and y is a green double, then they are degenerate. In other 
words, there are no non-degenerate doubles of opposite color. 

(7) If x is a red double (respectively, green double), then all pairs of related verti-
ces that have no common internal neighbors with x and are associated with red 
(respectively green) are adjacent. 

Figure 2 depicts a 5-scaffold with H = C(10). Conditions (1)–(3) are satisfed and 
none of the other conditions apply. 

We now state our main theorem. The proof is outlined in the next two sections. 

Theorem 5 (Main Theorem) Let G be a graph with r = 1 or r ≥ 5. Then α = r if  
and only if G is an r-scaffold. 

In [2], it is show that if G is a graph such that α = r , then G has a Hamiltonian 
path. Several of the results proved in that paper are useful in the next section. 
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2 Necessity for α = r when r = 1 or  r ≥ 5 

In this section, we show that if G is a graph with r = 1 or  r ≥ 5 such that α = r , then 
G is an r -scaffold. If α = r = 1, then G must be a clique, and we set H = P(2). 
The result is easily seen to be true since all external vertices are doubles and all pairs 
of external vertices are degenerate. Therefore, we can assume r ≥ 5. We now prove 
several lemmas related to G, which taken together imply the desired result. 

Lemma 1 [2] Let G be a graph with α = r ≥ 5. Then G contains either P(2r) or 
C(2r) as an induced subgraph. Moreover, if we let H denote an induced P(2r) or 
C(2r) subgraph, then each vertex of G is either contained in H or is adjacent to H. 

Preferred Ciliate Assumption. Let  G be a graph with α = r ≥ 5. If G contains 
C(2r) as an induced subgraph, we will henceforth let H denote one of these subgraphs. 
Otherwise, we will let H denote the induced P(2r) subgraph implied by Lemma 1 that 
maximizes the number of external vertices y such that δ(y) ≤ 2. As before, we put 
S = V (G) − V (H). It should be emphasized that this result holds for the remainder 
of this section. 

Lemma 2 [9] Let G be a graph with α = r ≥ 5. Suppose Q is a non-empty indepen-
dent set of external vertices and R is the set of internal neighbors of vertices in Q. If 
|R| ≤ 2|Q|, then none of the connected components of H − R is a path of odd order. 

Proof By Lemma 1, R is non-empty. Because H − R is a union of disjoint paths, if 
one of the connected components of the subgraph induced by H − R is a path of odd 
order, then 

2r − |R| 2r − 2|Q|
α(G) ≥ α(H − R) + |Q| > + |Q| ≥  + |Q| = r ,

2 2 
a contradiction. 

Lemma 3 Let G be a graph with α = r ≥ 5. If  v is an external vertex, then v is 
adjacent to at least two internal vertices. 

Proof By way of contradiction, suppose h is the unique internal neighbor of v. Now  
apply Lemma 2 with Q = {v} and R = {h}. 

Note that Lemma 3 implies that δ(v) is well-defned for every external vertex v. 
The next lemma partially establishes the necessity of Condition (1). 

Lemma 4 [2] Let G be a graph with α = r ≥ 5. If  H  = C(2r), then each external 
vertex is either a double or a triple vertex. 

We should point out that the proof requires r ≥ 5. 
However, establishing the necessity of Condition (1) when H = P(2r) is consid-

erably more diffcult, and requires the following sequence of lemmas, culminating in 
Lemma 11. 

Lemma 5 [2] Let G be a graph with α = r ≥ 5. If  H  = P(2r) and v is an external 
vertex, then 1 ≤ δ(v) ≤ 3. Thus, the internal neighbors of v must be a subset of four 
consecutive vertices. 
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Fig. 3 Referred to in the proof 
of Lemma 9 

Lemma 6 Let G be a graph with α = r ≥ 5. Suppose H = P(2r) and v is 
an external vertex. If δ(v) = 3, the internal neighbors of v cannot be a subset of 
{h1, h2r−2, h2r−1, h2r }, {h1, h2, h2r−1, h2r }, or  {h1, h2, h3, h2r }. 

This result follows from Lemma 6 in [2]. 

Lemma 7 Let G be a graph with α = r ≥ 5. If  H  = P(2r), and v is an external 
vertex, then v cannot be adjacent to both h1 and h2r−1, or both h2 and h2r . 

Proof If H = P(2r), then the Preferred Ciliate Assumption implies that G does not 
contain an induced C(2r). Now by way of contradiction, suppose v is adjacent to 
both h1 and h2r−1. Then by Lemma 5, the internal neighbors of v must be a subset 
of either {h1, h2, h2r−1, h2r } or {h1, h2r−2, h2r−1, h2r }. So by Lemma  6, δ(v) ≤ 2, 
which implies the internal neighbors of v are a subset of {h1, h2r−1, h2r }. Thus the 
vertices {h1, h2, . . . , h2r−1, v} induce a C(2r) subgraph, which is a contradiction. The 
case when v is adjacent to both h2 and h2r is symmetrical. 

Lemma 8 Let G be a graph with α = r ≥ 5. Suppose H = P(2r) and v is an external 
vertex such that δ(v) = 3. Then every double vertex whose internal neighbors are the 
endpoints of H is adjacent to v. 

Proof By way of contradiction, suppose there exists a double vertex z not adjacent 
to v whose internal neighbors are the endpoints of H . By Lemma 6, the internal 
neighbors of v are a subset of {hk , hk+1, hk+2, hk+3} for some k, 1 ≤ k ≤ 2r − 3. 
Since δ(v) = 3, v  must be adjacent to both hk and hk+3. Thus the vertices 
{z, h1, h2, . . . , hk , v, hk+3, . . . , h2r−1, h2r } induce a C(2r) subgraph, which contra-
dicts the Preferred Ciliate Assumption. 

Lemma 9 Let G be a graph with α = r ≥ 5. Suppose H = P(2r), and U is a col-
lection of external vertices whose internal neighbors are a subset of {h1, h2, h3, h4}. 
Furthermore, suppose each vertex of U is adjacent to h4, and U contains a vertex v 
such that δ(v) = 3. Then there exists a double vertex z such that z is adjacent to h1 
and h2, and moreover such that z is adjacent to no vertex in U (see Fig. 3). 

Proof Because δ(v) = 3, v is adjacent to h1 and h4. Let us consider ecc(hr+1). Since 
r ≥ 5, all vertices of H are at distance at most r −1 from hr+1, and furthermore h1, h2 
and h2r are the only vertices in H possibly at distance r − 1 from hr+1. Thus, there 
must exist a vertex z adjacent to at least two of h1, h2 and h2r , but no other vertices 
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Fig. 4 Referred to in the proof 
of Lemma 10 

in H . If  z is adjacent to only h2 and h2r , this contradicts Lemma 2 with Q = {z}. 
Thus, z must be adjacent to h1. Since z must have two neighbors in H, z must be 
adjacent to at least one of h2 or h2r . But  z cannot be adjacent to both h2 and h2r , 
for this would contradict Lemma 7. Clearly, z is not adjacent to v. Thus, z cannot 
be adjacent to only h1 and h2r in H , for this would contradict Lemma 8. Hence, z 
is adjacent to only h1 and h2 in H . Now, assume by way of contradiction, that z is 
adjacent to some u ∈ U . By definition of the set U, u is adjacent to h4. But now the 
distance between z and hr+1 is less than r , which contradicts our assumption that the 
distance from z to hr+1 is r . 

Lemma 10 Let G be a graph with α = r ≥ 5. Suppose H = P(2r) and U 
is a collection of external vertices whose internal neighbors are a subset of 
{h2r−3, h2r−2, h2r−1, h2r }. Furthermore, suppose each vertex of U is adjacent to 
h2r−3, and U contains a vertex v such that δ(v) = 3. Then there exists a double 
vertex z such that z is adjacent to h2r−1 and h2r , and moreover such that z is adjacent 
to no vertex in U (see Fig. 4). 

Proof The proof is symmetrical to that for Lemma 9. 

Lemma 11 Let G be a graph with α = r ≥ 5. If  H  = P(2r), then each external 
vertex is either a double or a triple vertex. 

Proof Suppose v is an external vertex and let V be the set of internal neighbors of v. 
By Lemma 5, 1  ≤ δ(v) ≤ 3, and V must be a subset of four consecutive vertices. If 
δ(v) = 1, then v is adjacent to two consecutive internal vertices. But if δ(v) = 2, and 
if v is not adjacent to three consecutive internal vertices, this contradicts Lemma 2 
with Q = {v}. 

Now suppose δ(v)=3. By Lemma 6, V cannot be a subset of {h1, h2r−2, h2r−1, h2r }, 
{h1, h2, h2r−1, h2r }, or  {h1, h2, h3, h2r }. This leaves us three cases to consider. Each 
case will lead to a contradiction, which implies δ(v) = 3. 

Case 1. Assume that V ⊆ {hk , hk+1, hk+2, hk+3} where 2 ≤ k ≤ 2r − 4. We will 
show this assumption implies there exists a double vertex z such that z is adjacent 
to h1 and h2r . Furthermore, z is not adjacent to v. However, the existence of such a 
vertex contradicts Lemma 8. Hence, Case 1 cannot occur. 

First, let us observe that v must be adjacent to both hk and hk+3. We consider three 
subcases. 

Subcase 1a. Suppose that 2 ≤ k ≤ r − 2. Since v is adjacent to hk+3, it is easily  
verifed that hr+1 is at distance at most r − 1 from all vertices of H . Moreover, h1 and 
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h2r are the only vertices in H possibly at distance r − 1 from  hr+1. Thus, there is a 
vertex z at distance r from hr+1 that is adjacent to h1 and h2r , and no other vertices 
of H . Clearly, v is not adjacent to z, otherwise hr+1 and z are not at distance r as 
assumed. 

Subcase 1b. If  k = r − 1, then the distance from v to all vertices of H is at most 
r − 1. Moreover, h1 and h2r are the only vertices possibly at distance r − 1 from  v. 
Thus, there is a vertex z at distance r from v that is adjacent to h1 and h2r , and clearly v 
is not adjacent to z. 

Subcase 1c. Suppose that r ≤ k ≤ 2r − 4. In this case, let us consider ecc(hr ). 
Vertex hr is at distance at most r − 1 from all vertices of H . Moreover, h1 and h2r 

are the only vertices possibly at distance r − 1 from  hr . Thus, there is a vertex z at 
distance r from hr that is adjacent to h1 and h2r , and clearly v is not adjacent to z. 

Case 2. Assume that V ⊆ {h1, h2, h3, h4}. Let  U be the collection external vertices 
whose internal neighbors are a subset of {h1, h2, h3, h4}. Furthermore, suppose each 
vertex of U is adjacent to h4. Since δ(v) = 3, we have v is adjacent to both h1 and 
h4. Thus v ∈ U . By Lemma 9, there exists a double vertex z such that z is adjacent 
to h1 and h2, and moreover such that z is adjacent to no vertex in U . Note that the 
vertices {z, h2, h3, . . . , h2r } induce a P(2r) subgraph, which we will denote as H . 
We will enumerate the vertices of H as {h1 = z, h2 = h2, . . . , h2r = h2r }. Since v 
is not adjacent to h1 = z, we have  δ(v) ≤ 2 with respect to H . Now suppose there 
exists a vertex x external to H such that δ(x) ≤ 2 with respect to H , but  δ(x) ≥ 3 
with respect to H . Then x is adjacent to z and by Lemma 5, δ(x) = 3 with respect 
to H . Applying Lemma 6 to H , we get that x’s neighbors in H must be a subset 
of {h1 = z, h2 = h2, h3 = h3, h4 = h4}. This implies x is adjacent to h4 = h4 and 
since x cannot be h1, we have  x ∈ U . This contradicts our choice of z, therefore no 
such vertex x exists. This fact, however, contradicts the Preferred Ciliate Assumption. 

Case 3. Assume that V ⊆ {h2r−3, h2r−2, h2r−1, h2r }. The remainder of this case 
is symmetrical to Case 2. 

The following Lemmas 12–17 show the necessity of the remaining Conditions 
(2)–(7). 

Lemma 12 Let G be a graph with α = r ≥ 5. Then every pair of degenerate vertices 
is adjacent and no pair of unrelated vertices is adjacent. 

Proof Let x and y be a pair of non-adjacent degenerate vertices, and let R be a set of 
three consecutive vertices of H which contains the union of the internal neighbors of 
x and y. Put Q = {x, y}. Because 2|Q| ≥ R, the hypothesis of Lemma 2 is satisfed, 
but one of the connected components of the subgraph induced by H − R is a path of 
odd order. 

Let x and y be a pair of adjacent unrelated vertices. Suppose frst that H = C(2r). 
Let A be a smallest set of consecutive internal vertices which contains the union of the 
internal neighbors of x and y. Since x and y are unrelated, |A| ≥ 5. Suppose frst that 
|A| ≥ 6. Let a and b be the two endpoints of the path induced by A which are adjacent 
to x and y, respectively. Now (H − A)∪ {a, b, x, y} is a set of vertices which induces 
a cycle of order no more than 2r − 2 = 2(r − 1). Consequently, either every vertex 
of H is at distance less than r −1 from x , in which case, since every external vertex of 
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G is adjacent to a vertex of H, ecc(x) < r , a contradiction; or there is a unique vertex 
of H at distance r − 1 from x (when |A| = 6), in which case, since every external 
vertex of G is adjacent to at least two vertices of H, ecc(x) < r , a contradiction. 

Next we suppose that |A| = 5. Again, let a and b be the two endpoints of the path 
induced by A that are adjacent to x and y, respectively. Now (H − A)∪ {a, b, x, y} is 
a set of vertices that induces a cycle of order 2r − 1. Since this is an odd cycle, there 
are exactly two vertices a1 and a2 of the cycle at distance r −1 from  a and exactly two 
vertices b1 and b2 of the cycle at distance r − 1 from b. Moreover, every other vertex 
of the cycle (induced by (H − A) ∪ {a, b, x, y}) is at distance less than r − 1 from  a 
(respectively b). Now, since every vertex not on H is adjacent to at least two vertices 
of H , this means there is some external vertex a that is adjacent to the two vertices 
a1 and a2 and no other vertices of H , for otherwise, ecc(a) < r . Similarly, there is 
some external vertex b that is adjacent to the two vertices b1 and b2 and no other 
vertices of H . Furthermore, a and b are not adjacent since the distance between b 
and a is r − 3 and the distance between b and b is r . Taking Q to be {a , b } and R 
to be {a1, a2, b1, b2}, both connected components of the subgraph induced by H − R 
are paths of odd order, a contradiction with Lemma 2. Therefore, it cannot be the case 
that H = C(2r). 

Suppose instead that H = P(2r). Let  a = hr and b = hr+1 be the bicenter of H . 
Again let A be a smallest set of consecutive internal vertices which contains the union 
of the internal neighbors of x and y (recall x and y are a pair of adjacent unrelated ver-
tices). First, assume the internal neighbors of y include both h1 and h2r . By Lemmas 7 
and 11, y must be a double vertex. Because x and y are unrelated, Lemma 5 implies 
that x must be adjacent to some vertex hk where 4 ≤ k ≤ 2r −3. Thus ecc(y) ≤ r −1, 
a contradiction. By the same argument, x cannot be adjacent to both h1 and h2r . Now  
let u be the vertex of A of smallest index that is adjacent to x , and let v be the vertex 
of A of largest index that is adjacent to y. We can assume that x and y are labeled so 
that the index of u is less than the index of any of the neighbors of y on H and the 
index of v is greater than the index of any of the neighbors of x on H . 

Assume frst that b is at least as close to h2r as v is with respect to H . Now, if  
|A| ≥ 6, then ecc(b) < r (since there is exactly one vertex, namely h2r , at distance 
r − 1 from b and every other vertex of G is adjacent to at least two vertices of H ). 
So, we may assume in this case that |A| = 5. Now if u = h1, then the two vertices 
h1 and h2r are at distance r − 1 from  b, and every other vertex of H is at distance 
less than r − 1 from b. Thus there must be an external vertex z adjacent to h1 and h2r 

and to no other vertices of H . This means there is an induced C(2r) in G (containing 
z, h1, x, y, u, v and h2r ), which contradicts the Preferred Ciliate Assumption. On the 
other hand, if u = h1, then the three vertices, h1, h2, and h2r are at distance r − 1 
from b. In this case, there must be an external vertex z adjacent to either h1 and h2 
and to no other vertices of H , or to  h1 and h2r and to no other vertices of H . In the  
frst case, the internal neighbors of {z, x} are a subset of {h1, h2, h3}. Thus z and x 
are degenerate. It follows from the earlier part of this proof that z and x are adjacent, 
thus ecc(b) <  r . In the second case, again there is an induced C(2r) in G, which 
contradicts the Preferred Ciliate Assumption. Consequently, it is not the case that b is 
at least as close to h2r as v is with respect to H (that is, v is between b and h2r on H ). 
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By a symmetric argument, it follows that u is between a and h1. First assume 
|A| ≥ 6. Now, if x is at least as close to the bicenter {a, b} as y is, then ecc(x) <  r , 
which contradicts the assumption that the radius is r . Otherwise, ecc(y) <  r , a con-
tradiction. 

So we must assume |A| = 5. In this case, we may assume without loss of generality 
that u is adjacent to a. Now,  h1 and h2r are at distance r − 1 from  x and all other 
vertices of H are at distance strictly less than r − 1 from x . Thus, there is a vertex z 
adjacent to both h1 and h2r and to no other vertices of H . This means that there is 
an induced C(2r) in G (containing z, h1, u, x, y, v  and h2r ), which contradicts the 
Preferred Ciliate Assumption. Therefore our assumption that x and y are adjacent and 
unrelated must be false. 

Lemma 13 Let G be a graph with α = r ≥ 5. Let {u, v}, {x, y} be two pairs of related 
vertices which are associated with different colors. If the pairs are disjoint with no 
edges between the first pair and the second pair, or if v = x, then either uv is an edge 
or xy is an edge. 

Proof Lemmas 4 and 11 imply that each of u, v, x , and y are doubles or triples. 
Assume {u, v} are associated with a red edge and {x, y} are associated with a green 
edge. By way of contradiction, assume neither uv nor xy  is an edge. Because we 
colored h1h2 red, the internal neighbors of u and v are {h2 j , h2 j+1, h2 j+2, h2 j+3} for 
some j, 1 ≤ j ≤ r . (When j = r − 1, we assume h2 j+3 = h1. When j = r , 
we assume h2 j+1 = h1, h2 j+2 = h2, and h2 j+3 = h3.) Likewise, the internal 
neighbors of x and y are {h2k+1, h2k+2, h2k+3, h2k+4} for some k, 0 ≤ k ≤ r − 1 
(when k = r − 1, we assume h2k+3 = h1 and h2k+4 = h2). Suppose k ≥ j , 
and put Q = {u, v, x, y}. If  |Q| =  4 then Lemma 2 is violated. If k = j , then 
|Q| ≥  3. Let us assume |Q| =  3 and v = x . Note that in this case u and y 
must be unrelated, and therefore non-adjacent by Lemma 12. However, the set of 
internal neighbors of Q is R = {h2 j , h2 j+1, h2 j+2, h2 j+3, h2 j+4}. This contradicts 
Lemma 2. Similarly, if k = j + 1, then |Q| = 4 and the set of internal neighbors 
of Q is R = {h2 j , h2 j+1, h2 j+2, h2 j+3, h2 j+4, h2 j+5, h2 j+6}. This again contradicts 
Lemma 2. Finally, suppose k ≥ j + 2. Then |Q| = 4 and the set of internal neigh-
bors of Q is R = {h2 j , h2 j+1, h2 j+2, h2 j+3, h2k+1, h2k+2, h2k+3, h2k+4}. Thus the 
set {h2 j+4, h2 j+5, . . . , h2k } is non-empty and therefore induces a path of odd order, 
once more contradicting Lemma 2. We can use a symmetrical argument in the case 
j > k. 

Lemma 14 Let G be a graph with α = r ≥ 5. If  H  = P(2r), and v is a double vertex 
whose two internal neighbors are not endpoints of H, then v is red. 

Proof By way of contradiction, suppose v is green. Then v’s internal neighbors are 
h2 j and h2 j+1 for some j, 1 ≤ j ≤ r − 1. Now apply Lemma 2 with Q = {v} and 
R = {h2 j , h2 j+1}. 
Lemma 15 Let G be a graph with α = r ≥ 5. If  H  = P(2r), and {x, y} is a pair 
of related vertices associated with red whose central edge is not the first or last edge 
in H, then xy is an edge. 
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Proof By way of contradiction, suppose x and y are not adjacent. By Lemmas 11 
and 14, both x and y must be triples (for otherwise, one must be a green double whose 
two internal neighbors are not endpoints of H , a contradiction). Moreover, the internal 
neighbors x and y are {h2 j , h2 j+1, h2 j+2, h2 j+3} for some j, 1 ≤ j ≤ r − 2. Then 
the set {h1, h2, . . . , h2 j−1} is non-empty and therefore induces a path of odd order. 
This contradicts Lemma 2 with Q = {x, y} and R = {h2 j , h2 j+1, h2 j+2, h2 j+3}. 
Lemma 16 Let G be a graph with α = r ≥ 5. If x is a red double and y is a green dou-
ble, then they are degenerate. Hence, there are no non-degenerate doubles of opposite 
color. 

Proof By way of contradiction, suppose x and y are not degenerate. Because x and y 
are doubles of opposite color, then they are unrelated. Hence x and y are not adjacent 
by Lemma 12. Moreover, the internal neighbors of x are h2 j+1 and h2 j+2 for some 
j, 0 ≤ j ≤ r − 1. Likewise, the internal neighbors of y are h2k and h2k+1 for some 
k, 1 ≤ k ≤ r (when k = r , we assume h2k+1 = h1). Because x and y are not related, 
we have either 2k > 2 j + 2 or 2k + 1 < 2 j + 1. Suppose 2k > 2 j + 2. Thus the 
set {h2 j+3, h2 j+4, . . . , h2k−1} is non-empty and therefore induces a path of odd order. 
This contradicts Lemma 2 with Q = {x, y} and R = {h2 j+1, h2 j+2, h2k , h2k+1}. We  
can use a symmetrical argument in the case 2k + 1 < 2 j + 1. 

Lemma 17 Let G be a graph with α = r ≥ 5. If x is a red double (respectively, green 
double), then all pairs of related vertices that have no common internal neighbors 
with x and are associated with red (respectively, green) are adjacent. 

Proof Suppose x is a red double and {u, v} is a pair of related vertices associated 
with red that have no common internal neighbors with x . By way of contradic-
tion, assume u and v are not adjacent. Because x has no common internal neigh-
bors with either u or v, then x is unrelated to either of these vertices. Hence x is 
not adjacent to either of these vertices by Lemma 12. Moreover, the internal neigh-
bors of x are h2 j+1 and h2 j+2 for some j, 0 ≤ j ≤ r − 1. Likewise, the internal 
neighbors of u and v are {h2k, h2k+1, h2k+2, h2k+3} for some k, 1 ≤ k ≤ r . (When 
k = r −1, we assume h2k+3 = h1. When k = r , we assume h2k+1 = h1, h2k+2 = h2, 
and h2k+3 = h3.) Because x is unrelated to either u or v, we have  |k − j | ≥  2. 
Suppose k > j . Thus the set {h2 j+3, h2 j+4, . . . , h2k−1} is non-empty and there-
fore induces a path of odd order. This contradicts Lemma 2 with Q = {x, u, v} and 
R = {h2 j+1, h2 j+2, h2k , h2k+1, h2k+2, h2k+3}. We can use symmetrical arguments in 
the cases j > k or x is green. 

3 Suffciency for α = r when r = 1 or  r ≥ 5 

In this section, we show that if G is an r -scaffold with r = 1 or  r ≥ 5, then α = r . 
If r = 1, then G must be a clique, and so we are fnished. Therefore, we can assume 
r ≥ 5. Because G is an r -scaffold, G contains an induced subgraph H = P(2r) or 
H = C(2r) such that Conditions (1)–(7) are satisfed with respect to H . 

We consider two major cases, and several subcases. First, though, let R2 j+1 be 
the set of external vertices adjacent to h2 j+2 whose internal neighbors are a subset 
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of {h2 j , h2 j+1, h2 j+2, h2 j+3} for every j, 0 ≤ j ≤ r − 1 (When j = 0, we assume 
h2 j = h2r , and when j = r − 1, we assume h2 j+3 = h1). Note that h2 j+1h2 j+2 is 
a red edge. Likewise, let G2k be the set of external vertices adjacent to h2k+1 whose 
internal neighbors are a subset of {h2k−1, h2k , h2k+1, h2k+2} for every k, 1 ≤ k ≤ r 
(when k = r , we assume h2k+1 = h1 and h2k+2 = h2). Note that h2kh2k+1 is a green 
edge (but this edge is imaginary when k = r and H = P(2r)). 

Then if x is a red double vertex, x is an element of G2 j and R2 j+1 for some 
j, 0 ≤ j ≤ r − 1 (when j = 0, we assume G2 j = G2r ). Moreover, if x is a green 
double, then x is an element of R2k−1 and G2k for some k, 1 ≤ k ≤ r . Likewise, if x 
is a triple, either x is an element of G2 j and R2 j+1 for some j, 0 ≤ j ≤ r − 1 (when 
j = 0, we assume G2 j = G2r ); or, x is an element of R2k−1 and G2k for some k, 
1 ≤ k ≤ r . Thus by Condition (1), each external vertex is an element of Rp for some 
p, 1 ≤ p ≤ 2r − 1, and also an element of Gq for some q, 2 ≤ q ≤ 2r . 

Let I be a maximum independent set in G. In light of Conditions (1) and (2), it 
is easily seen that |I ∩ (R2 j+1 ∪ {h2 j+1, h2 j+2})| ≤ 2 for every j, 0 ≤ j ≤ r − 1. 
Likewise, |I ∩ (G2k ∪ {h2k , h2k+1})| ≤ 2 for every k, 1 ≤ k ≤ r . 

Case 1. H = C(2r). 

Proof We consider three subcases. 
Subcase 1a. Suppose for every j, 0 ≤ j ≤ r −1, that I ∩ (R2 j+1 ∪{h2 j+1, h2 j+2}) 

does not contain two related vertices associated with the central edge h2 j+1h2 j+2. 
Moreover suppose there does not exist any green double vertices. We will show |I ∩ 
(R2 j+1 ∪{h2 j+1, h2 j+2})| ≤ 1 for every possible value of j . By way of contradiction, 
suppose u, v  ∈ I ∩ (R2 j+1 ∪{h2 j+1, h2 j+2}) for some j, 0 ≤ j ≤ r −1. If both u and 
v are doubles, then they must both be red and adjacent to h2 j+1 and h2 j+2. Therefore 
they are degenerate, and by Condition (2), they are adjacent. If u is a triple and v is a 
(red) double, or vice versa, then again they must be degenerate, and therefore adjacent. 
Furthermore, both are adjacent to h2 j+1 and h2 j+2. Finally, if both u and v are triples, 
both are adjacent to h2 j+1 and h2 j+2, and they are either degenerate or related with 
central edge h2 j+1h2 j+2. If the former is true, then they are adjacent by Condition 
(2). The latter cannot be true as u and v would be related vertices, contradicting our 
assumption. Clearly either h2 j+1 ∈/ I or h2 j+2 ∈/ I . So in any event, by Condition (1), 
|I ∩ (R2 j+1 ∪ {h2 j+1, h2 j+2})| ≤ 1 for every possible value of j . 

Note it follows from our observation prior to Case 1 that V (G) = ∪r−1 
j=0(R2 j+1 ∪ 

{h2 j+1, h2 j+2}). Then, 

α = |I | 
r−1= |I ∩ (∪ 0(R2 j+1 ∪ {h2 j+1, h2 j+2}))|j= 

r−1= |∪  0(I ∩ (R2 j+1 ∪ {h2 j+1, h2 j+2}))|j= 

r−1 �
≤ |I ∩ (R2 j+1 ∪ {h2 j+1, h2 j+2})|

j=0 

≤ r. 
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But α ≥ r by Theorem 2, so we have  α = r . 
Subcase 1b. Suppose for every j, 0 ≤ j ≤ r −1, that I ∩ (R2 j+1 ∪{h2 j+1, h2 j+2}) 

does not contain two related vertices associated with the central edge h2 j+1h2 j+2. 
But now suppose there exists a green double v. Thus v is an element of R2k−1 and 
G2k for some k, 1 ≤ k ≤ r . If  |I ∩ (R2 j+1 ∪ {h2 j+1, h2 j+2})| ≤  1 for all possible 
values of j , then we can show α = r as in Subcase 1a. Therefore, assume otherwise. 
By our suppositions, without loss of generality in the argument that follows, we can 
additionally assume that k = 1. Note that v is necessarily adjacent to h2 and h3. 
Since any pair of vertices in R1 must be adjacent, if |I ∩ (R1 ∪ {h1, h2})| = 2, then 
h1 ∈ I ∩ (R1 ∪ {h1, h2}). Assume I ∩ (R1 ∪ {h1, h2}) = {h1, v}. 
Claim There exists an integer m, 3≤m ≤ 2r−1, such that |I ∩(Rm ∪{hm , hm+1})|=0. 

Proof of Claim By way of contradiction, suppose |I ∩ (R j ∪ {h j , h j+1})| ≥  1 
for j = 3, 5, . . . , 2r − 1. We show this implies none of the internal vertices 
h1,h3, h5, . . . , h2r−1 is contained in I , contradicting the assumption I ∩ (R1 ∪ 
{h1, h2}) = {h1, v}. First, clearly h3 ∈/ I since h3 is adjacent to v. Because 
|I ∩ (R3 ∪ {h3, h4})| ≥  1, then necessarily |I ∩ (R3 ∪ {h3, h4})| =  1 and obvi-
ously there must exist a vertex x = h3 such that x ∈ I ∩(R3 ∪{h3, h4}). By Condition 
(2), x cannot be a red double, because x would be degenerate to v. Thus x is a triple, 
x is a green double (adjacent to h4 and h5), or x = h4. But  if  x is a triple adjacent to 
h2, h3, and h4, then x and v are degenerate, again a contradiction by Condition (2). 
Note that any of the remaining possibilities for x imply h5 ∈/ I . Put z3 = x . 

Now, consider I ∩ (R5 ∪{h5, h6}). But  if  h5 ∈/ I and |I ∩ (R5 ∪{h5, h6})| ≥ 1, then 
necessarily |I ∩ (R5 ∪ {h5, h6})| = 1 and obviously there must exist a vertex x = h5 
such that x ∈ I ∩ (R5 ∪{h5, h6}). By Condition (6), x cannot be a red double, because 
x is not degenerate to v. Thus x is a triple, x is a green double (adjacent to h6 and 
h7), or x = h6. Suppose x is a triple adjacent to h4, h5, and h6. Then z3 = h4, since 
z3 ∈ I . Hence z3 is a green double (adjacent to h4 and h5), or z3 is a triple adjacent 
to h3, h4, and h5. In the former case, z3 and x are degenerate, a contradiction. In the 
latter case, {v, z3} is a pair of related vertices in I ∩ (R3 ∪ {h3, h4}) associated with 
edge h3h4, contradicting the assumption that no such pair exists. Hence x is a green 
double, x is a triple adjacent to h5, h6, and h7, or  x = h6. In any event, x is adjacent 
to h7, which implies h7 ∈/ I . Put z5 = x . 

Next, consider I ∩(R7 ∪{h7, h8}). But  if  h7 ∈/ I and |I ∩(R7 ∪{h7, h8})| ≥ 1, then 
necessarily |I ∩ (R7 ∪ {h7, h8})| = 1 and obviously there must exist a vertex x = h7 
such that x ∈ I ∩ (R7 ∪{h7, h8}). By Condition (6), x cannot be a red double, because 
x is not degenerate to v. Thus x is a triple, x is a green double (adjacent to h8 and 
h9), or x = h8. Suppose x is a triple adjacent to h6, h7, and h8. Then z5 = h6, since 
z5 ∈ I . Hence z5 is a green double (adjacent to h6 and h7), or z5 is a triple adjacent 
to h5, h6, and h7. In the former case, z5 and x are degenerate, a contradiction. In the 
latter case, {z5, x} is a pair of related vertices in I ∩ (R5 ∪ {h5, h6}) associated with 
edge h5h6, contradicting the assumption that no such pair exists. Hence x is a green 
double, x is a triple adjacent to h7, h8, and h9, or  x = h8. Put z7 = x . 

Continuing in the same manner, it follows that h9 ∈/ I, h11 ∈/ I, . . . , h2r−1 ∈/ I , 
and h1 ∈/ I . But we showed that h1 ∈ I. This contradiction completes the proof of the 
claim. 
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Put k1 = 1. Using the claim, let f (k1) be the smallest integer such that 3 ≤ f (k1) ≤ 
2r −1 and |I ∩ (R f (k1) ∪{h f (k1), h f (k1)+1})| = 0. From the proof of the claim we can 
assume |I ∩ (R j ∪ {h j , h j+1})| = 1 for  j = 3, 5, . . . ,  f (k1) − 2. Let k2 > k1 be the 
smallest integer such that |I ∩(Rk2 ∪{hk2 , hk2+1})| = 2. If no such integer exists, then 
we quit. Otherwise k2 ≥ f (k1) + 2, and as in the claim we can argue there exists an 
integer m, k2 +2 ≤ m ≤ 2r −1, such that |I ∩(Rm ∪{hm , hm+1})| = 0. Assume f (k2) 
is the smallest such integer m. Moreover, we can assume |I ∩ (R j ∪ {h j , h j+1})| = 1 
for j = k2 + 2, . . . ,  f (k2) − 2. We continue in this manner until we must quit, say 
after kp is defned, p ≥ 1. 

Let K = {k1, k2, . . . ,  kp} and F = { f (k1), f (k2), . . . , f (kp)}. Then K ∩ F = ∅. 
Note it follows from our observation prior to Case 1 that V (G) = ∪r

j 
−
= 

1
0(R2 j+1 ∪ 

{h2 j+1, h2 j+2}). Therefore, 

α = |I | 
r−1= |I ∩ (∪ 0(R2 j+1 ∪ {h2 j+1, h2 j+2}))|j= 

r−1= |∪  0(I ∩ (R2 j+1 ∪ {h2 j+1, h2 j+2}))|j= 

= |(∪ j∈K (I ∩ (R2 j+1 ∪ {h2 j+1, h2 j+2}))) 
∪(∪ j∈F (I ∩ (R2 j+1 ∪ {h2 j+1, h2 j+2}))) 
∪(∪ j∈/(K ∪F)(I ∩ (R2 j+1 ∪ {h2 j+1, h2 j+2})))|

≤ |∪ j∈K (I ∩ (R2 j+1 ∪ {h2 j+1, h2 j+2}))|
+|∪ j∈F (I ∩ (R2 j+1 ∪ {h2 j+1, h2 j+2}))|
+|∪ j∈/(K ∪F)(I ∩ (R2 j+1 ∪ {h2 j+1, h2 j+2}))|

≤ 2p + 0p + 1(r − 2p) = r. 

As before, we have α = r by Theorem 2. 
Subcase 1c. Suppose for some j, 0 ≤ j ≤ r −1, that I ∩ (R2 j+1 ∪{h2 j+1, h2 j+2}) 

contains two related vertices u and v associated with the central (red) edge h2 j+1h2 j+2. 
Moreover suppose for every k, 1 ≤ k ≤ r , that I ∩ (G2k ∪ {h2k , h2k+1}) does not 
contain two related vertices associated with the central (green) edge h2kh2k+1. If there 
does not exist any red doubles, using an argument symmetrical to Subcase 1a above, 
we can show that α = r . If there does exist a red double, using an argument symmet-
rical to Subcase 1b above, we can show again that α = r . Therefore assume for some 
k, 1 ≤ k ≤ r , that I ∩ (G2k ∪ {h2k , h2k+1}) contains two related vertices x and y 
associated with the central (green) edge h2kh2k+1. By Condition (3), there must be an 
edge between {u, v} and {x, y}, a contradiction. 

This completes the proof of Case 1. 
Case 2. H = P(2r). 

Proof We consider three more subcases. 
Subcase 2a. Suppose for every j, 0 ≤ j ≤ r −1, that I ∩ (R2 j+1 ∪{h2 j+1, h2 j+2}) 

does not contain two related vertices associated with the central edge h2 j+1h2 j+2. 
Moreover suppose there does not exist any green double vertices. We can now argue 
as in Subcase 1a to show that α = r . 
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Fig. 5 A graph with α = r = 2 
but not a 2-scaffold 

Subcase 2b. Suppose for every j, 0 ≤ j ≤ r −1, that I ∩ (R2 j+1 ∪{h2 j+1, h2 j+2}) 
does not contain two related vertices associated with the central edge h2 j+1h2 j+2. 
But now suppose there exists a green double v. By Condition (4), v is adjacent to h1 
and h2r . Thus v is an element of R2r−1 and G2r . If  |I ∩(R2 j+1 ∪{h2 j+1, h2 j+2})| ≤  1 
for all possible values of j , then we can show α = r as in Subcase 1a. Therefore, 
assume otherwise. By our suppositions, without loss of generality, we can additionally 
assume that I ∩ (R2r−1 ∪{h2r−1, h2r }) = {h2r−1, v}. We can now argue as in Subcase 
1b to show that α = r . 

Subcase 2c. Suppose for some j, 0 ≤ j ≤ r −1, that I ∩ (R2 j+1 ∪{h2 j+1, h2 j+2}) 
contains two related vertices u and v associated with the central (red) edge h2 j+1h2 j+2. 
By Condition (5), j = 0 or  j = r − 1. Thus either h1 ∈/ I or h2r ∈/ I . Moreover 
suppose for every k, 1 ≤ k ≤ r , that I ∩ (G2k ∪ {h2k , h2k+1}) does not contain two 
related vertices associated with the central (green) edge h2kh2k+1. If there does not 
exist any red doubles, then we can use an argument symmetrical to Subcase 1a to show 
that α = r . On the other hand, if there does exist a red double, we can use an argument 
symmetrical to Subcase 1b to show that α = r . 

Therefore assume for some k, 1 ≤ k ≤ r , that I ∩ (G2k ∪ {h2k , h2k+1}) contains 
two related vertices x and y associated with the central (green) edge h2kh2k+1. By  
Condition (3), there must be an edge between {u, v} and {x, y}, a contradiction. 

This completes the proof of Case 2, and also of Theorem 5. 

4 The Remaining Cases r = 2, 3, or 4 

The graph shown in Fig. 5 has α = r = 2, but is not a 2-scaffold (it does not 
contain an induced path on 2r = 4 vertices and, for any induced cycle H on 2r = 4 
vertices, the external vertices are not doubles or triples, violating Condition (1) of an 
r -scaffold). Hence the Main Theorem is not valid in this case. 

On the other hand, we conjecture the Main Theorem remains valid for α = r = 3 
and α = r = 4. 

Conjecture 1 Let G be a graph with r = 1 or r ≥ 3. Then α = r if and only if G is 
an r-scaffold. 

However, our proof of the Main Theorem does not extend to Conjecture 1, as dem-
onstrated by the following two graphs. The graph shown in Fig. 6 has α = r = 3 and 
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Fig. 6 A graph with α = r = 3, 
and a 3-scaffold, but not with 
respect to the indicated induced 
C(6) 

Fig. 7 A graph with α = r = 4, 
and a 4-scaffold, but not with 
respect to the indicated induced 
C(8) 

Fig. 8 Referred to in 
Condition (8) 

is a 3-scaffold, but not with respect to indicated induced C(6). The graph shown in 
Fig. 7 has α = r = 4 and is a 4-scaffold, but not with respect to the indicated induced 
C(8). In both graphs, this is because the bottom-most external vertex is adjacent to 
four internal vertices. Thus these graphs violate Lemma 4 in the proof. 

The definition of an r -scaffold requires a priori that the scaffold has a given radius r . 
We conjecture that we can weaken the definition of scaffolds, and therefore strengthen 
the statement of the Main Theorem, as follows. Let k ≥ 1 be an integer. A graph G 
will be called a k-scaffold provided G contains an induced subgraph H = P(2k) or 
H = C(2k) satisfying Conditions (1)–(7) listed previously, and moreover such that: 

(8) Let x, y and z be distinct double vertices such that x and y are degenerate with 
only one common internal neighbor, and y and z are degenerate with only one 
common internal neighbor. Assume x and z are not degenerate. If u is a triple 
vertex related to x not degenerate with y, then ux and xz  cannot both be edges 
(see Fig. 8). 
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Fig. 9 Referred to in 
Condition (9) 

Fig. 10 Referred to in 
Condition (10) 

Fig. 11 Referred to in 
Condition (11) 

(9) Let x, y and z be distinct double vertices such that x and y are degenerate with 
only one common internal neighbor, and y and z are degenerate with only one 
common internal neighbor. Assume x and z are not degenerate. If u is a triple 
vertex related to x not degenerate with y, and v is a triple vertex related to z not 
degenerate with y, then ux and zv cannot both be edges (see Fig. 9). 

(10) Let x and y be double vertices such that x and y are degenerate with only one 
common internal neighbor. If u is a triple vertex related to x not degenerate with 
y, and v is a triple vertex related to y not degenerate with x , then ux and yv 
cannot both be edges (see Fig. 10). 

(11) Let x be a double vertex related to two triple vertices u, v  such that u and v 
have no common internal neighbors. Then ux and xv cannot both be edges (see 
Fig. 11). 

Conjecture 2 Let G be a graph and let k = 1 or k ≥ 5. Then α(G) = r(G) = k if  
and only if G is a k-scaffold. 
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