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Abstract 

Conjecture number 747 of Graffiti (circa 1992) states that the average 

distance of a simple, connected graph is not more than half the 

maximum order of an induced bipartite subgraph. Recently, P. Hansen 

et al. settled this conjecture by showing that the average distance is not 

more than half the maximum order of an induced forest. Moreover, 

they conjectured that the average distance is not more than half the 

maximum order of an induced linear forest. In this note, we give a 

partial resolution of this conjecture. Namely, we show that the average 

distance is less than half the maximum order of an induced linear 

forest, plus one-half. 

Keywords: average distance, bipartite number, connected domination 

number, forest number, Graffiti, independence number, linear forest 

number. 

Mathematics Subject Classification: 05C35. 

Abbreviated Title: A Note on a Conjecture of Hansen 

Introduction and Key Definitions 

Graffiti, a computer program that makes conjectures, was written by S. 

Fajtlowicz and dates from the mid-1980's. A numbered, annotated listing of 

several hundred of Graffiti's conjectures can be found in [4]. Graffiti has 

correctly conjectured a number of new bounds for several well studied graph 

invariants; bibliographical information on resulting papers can be found in [2]. 

We limit our discussion to graphs that are simple, connected and finite of order 

8. Although we often identify a graph K with its set of vertices, in cases where 

we need to be explicit we write Z ÐKÑ. We let � œ �ÐKÑ denote the 

independence number of K. If  ß @ are vertices of K, then 5KÐ ß @Ñ denotes the 

distance between   and @ in K. This is the length of a shortest path in K 
connecting   and @. The total distance from @ in K, denoted by AKÐ@Ñ, is the 

sum of all distances from @ to the remaining vertices of K. The average distance 

of K, denoted by H œ HÐKÑ, is the average of all distances between pairs of 

distinct vertices of K. (In the degenerate case 8 œ ", we set HÐKÑ œ !.) 

Unless stated otherwise, when we refer to a subgraph of a graph K, we mean an 

induced subgraph. We call the bipartite number of K the maximum order of a 



          

             

            

          

          

            

            

            

       

            

   

       

         

           

             

                

       

       

        

    

       

             

     

         

bipartite subgraph. We denote this invariant by , œ ,ÐKÑ. One can make 

analogous definitions for the forest number and the linear forest number of K (a 

linear forest is a forest where each connected component is a path). These 

invariants are denoted by 0 œ 0ÐKÑ and G œ GÐKÑ, respectively. A few other 

more specialized definitions will be introduced in the next section. Standard 

graph theoretical terms not defined in this paper can be found in [6]. 

One of the earliest and best known of Graffiti's conjectures states that the 

average distance of a graph is not more than its independence number. This 

conjecture is listed as number 2 in [4]. 

Graffiti's conjecture number 2 was settled by F. Chung in [1], where the 

following theorem is proved. 

Theorem 1: Let K be a graph. Then 

H Ÿ �, 

with equality holding if and only if K is complete. 

In 1992, Graffiti formulated a generalization of its own conjecture number 2. 

This conjecture, listed as number 747 in [4], states that average distance of a 

graph K is not more than half of ,ÐKÑ. Recently, P. Hansen et al. in [5, Theorem 

4.2] settled this conjecture by showing the following. 

Theorem 2: Let K be a graph. Then 

0 
H Ÿ . 

# 

Moreover, they close with the following stronger conjecture, numbered 

Conjecture 5.3 in their paper. 

Conjecture 1: Let K be a graph. Then 

G 
H Ÿ . 

# 

In this note, using results found in [3], we give a partial resolution of 

Conjecture 1. Namely, we show that: 

Theorem 3 (Main Theorem): Let K be a graph. Then 

G " 
H � � . 

# # 



    

                 

                 

          

             

              

              

             

            

             

                  

              

          

         

               

              

        

              

       

                 

               

               

               

                

Thus if G is odd, 

H � ² 
G ³. 
# 

Other Definitions and Two Lemmas 

A set of vertices Q of a graph K is said to dominate K provided each vertex of 

the graph is either in Q or adjacent to a vertex in Q . The minimum order of a 

connected dominating set, called the connected domination number of K, is 

denoted by #- œ #-ÐKÑ. A trunk for a graph K is a sub-tree (not necessarily 

induced) that contains a dominating set of K. Hence, every spanning tree of K is 

likewise a trunk for K, and every connected dominating set is the vertex set of 

some trunk. Therefore, if K contains a trunk of order >, then > ˘ #- . The 

following lemmas and their proofs are found in [3, Lemmas 5 and 7]. 

Lemma 1: Let K be a graph with a trunk of order > ˘ ". Then 

> � $ 
HÐKÑ � . 

# 

Lemma 2: Let K be a graph with a trunk Q of order more than one, and let 7 
be a vertex with maximum total distance in K. Then if 7 − Q , there exists a 

graph J with Z ÐJÑ œ Z ÐKÑ and a vertex B − Q , such that HÐJÑ ˘ HÐKÑ, 
and moreover such that Q ° ÖB× is a trunk for J . 

One more piece of terminology is needed. Let W be any subset of vertices of a 

graph K. Then the open neighborhood of W , denoted by RÐWÑ, is the set of 

neighbors of all vertices in W , less W itself. 

Main Results 

Note that the following result is a modification of Theorem 4 found in [3] . 

Theorem 4: Let K be a graph. Then 

#- Ÿ G ° ". 

Proof. Choose an arbitrary vertex B! of K and call it path P!. If K is not trivial, 

then we can choose a vertex C in the open neighborhood RÐB!Ñ and append it to 

P!. Next we choose a vertex D in the open neighborhood of P! that is adjacent 

to exactly one endpoint of P!, and no interior vertices of P!. We then append D 
to P!, and we repeat this process until we can no longer choose such a vertex D. 



              

              

                

              

             

                

          

            

             

            

               

               

              

             

       

         

           

                

              

              

  

               

        

           

              

             

               

         

            

                

               

             

               

            

           

                

Next choose a vertex B" outside of P! and its open neighborhood. Since K is 

connected, we can assume there exists a vertex -! in RÐP!Ñ such that -! is 

adjacent to B". If no such vertex B" exists, then we quit. Otherwise, add B" to a 

path P" and continue as before. That is, choose a vertex D in the open 

neighborhood of P" that is adjacent to exactly one endpoint of P", no interior 

vertices of P", and no vertices of P!. We append D to P", and we repeat this 

process until we can no longer choose such a vertex D. 

When we reach stage 4, we choose a vertex B4 outside of P! ' P" ' … ' P4°" 

and its open neighborhood. Since K is connected, we can assume there exists a 

vertex -4°" in RÐP! ' P" ' … ' P4°"Ñ such that -4°" is adjacent to B4. If no 

such vertex B4 exists, then we quit. Otherwise, add B4 to a path P4 and continue 

as before. That is, choose a vertex D in the open neighborhood of P4 that is 

adjacent to exactly one endpoint of P4, no interior vertices of P4, and no vertices 

of P! ' P" ' … ' P4°". We append D to P4, and we repeat this process until we 

can no longer choose such a vertex D. 

Once the algorithm terminates (assume after stage 5), note that 

P œ P! ' P" ' … ' P5 induces a linear forest. Let <4 be an endpoint of P4 

other than B4. If B4 is the only vertex of P4, then put <4 œ B4. See Figure 1. 

Suppose @ is a vertex outside of the induced linear forest. Let 0Ð@Ñ be the 

minimum integer such that @ is adjacent to some vertex of P0Ð@Ñ. Next we prove 

the following claim. 

Claim: Let @ be a vertex outside of P. Then @ is adjacent to either both 

endpoints of P0Ð@Ñ or an interior vertex in P0Ð@Ñ. 

Proof of claim. If 0Ð@Ñ is undefined, this implies the algorithm terminated 

prematurely. Hence we can assume 0Ð@Ñ exists and @ is adjacent to a vertex in 

P0Ð@Ñ. By way of contradiction, suppose @ is adjacent to exactly one endpoint of 

P0Ð@Ñ and no interior vertices of P0Ð@Ñ. But since @ is not adjacent to any vertex 

of P! ' P" ' … ' P0Ð@Ñ°", then the algorithm would have selected @ for 

inclusion in P0Ð@Ñ, meaning that @ is contained in P, a contradiction. è 

For each vertex @ outside of P, let +@ denote the neighbor of @ in P0Ð@Ñ other 

than <0Ð@Ñ. The prior claim guarantees that +@ exists. We are now in a position to 

complete the proof. We will construct a spanning tree for a dominating set X w 

w wQ of K with order at most G ° ". Thus X is the required trunk and we are 

finished. First, though, we construct a spanning tree X for a somewhat larger 

dominating set Q . The vertices of Q are P ' Ö-!ß -"ß …ß -5°"×. (Note: The -4's 

may not be unique.) The edges of X are the edges of each path P4 along with 



             

                 

           

                 

              

                 

              

                 

                

               

         

  

  

   

        

 

 

 

 

         

    

each edge Ö-4ß B4�"× and Ö-4ß +-4×. Since 0Ð-4Ñ Ÿ 4 and -4 is adjacent to B4�" for 

each 4, this implies there exists a path in X from each vertex of Q to B!. Thus 

Q spans a connected subgraph. Moreover, the claim implies that Q dominates 
w wK, so X is a trunk. We now construct Q and X by deleting each <4 from Q 

and X along with any incident edges in X . Recall <4 Á +@ for any vertex @ 
outside of P. Also, either <4 is adjacent to some vertex of P4 or <4 is adjacent to 

w w-4. Hence Q continues to dominate KÞ We want to show X is a spanning tree 
w wfor Q . Choose a vertex @ in Q . Because <4 is an endpoint of P4, then the path 

win X from @ to B! remains intact in X , unless <: œ B: for some integer : and 

the path from @ to B! in X contains the edges Ö-:°"ß B:× and Ö-;ß B:×, for some 

integer ; 2 :. Therefore, 0Ð-;Ñ œ : and +-; œ B: œ <:, a contradiction to our 

choice of +-; . 

r0 

L0 

rk 

Lk 

r1 

L1 

r3 

L3 

r2 = x2 

L2 

ck-1 

c0 c1=c2 

FIGURE 1: Algorithm diagram. 

X wWe now know that is a trunk. But 

wlQ l œ lP ' Ö-!ß -"ß …ß -5°"× ° Ö<!ß <"ß …ß <5×l 
œ lP! ' P" ' … ' P5 ' Ö-!ß -"ß …ß -5°"× ° Ö<!ß <"ß …ß <5×l 
œ lP! ' P" ' … ' P5l � lÖ-!ß -"ß …ß -5°"×l ° lÖ<!ß <"ß …ß <5×l 
Ÿ G � 5 ° Ð5 � "Ñ 
œ G ° ". è 

Theorem 3 (Main Theorem): Let K be a graph. Then 

G " 
H � � . 

# # 

Thus if G is odd, 

H � ² 
G ³. 
# 



            

                

              

            

   

           

      

          

    

           

      

         

            

          

           

Proof. The algorithm described in the proof of Theorem 4 starts with an 

arbitrary vertex B!, and if K is not trivial, then B! is an element of the final trunk 
wX of order at most G ° " constructed in the proof. Hence, we can run the 

algorithm choosing B! as a vertex of maximum total distance. Then by the 

Lemmas 1 and 2, 

HÐKÑ Ÿ HÐJ Ñ � 
#-ÐJ Ñ � $ 

Ÿ 
G ° # � $ 

œ 
G " 

� . è 
# # # # 
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